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ABSTRACT: An efficient strategy for the synthesis of 3-(3-indolyl)-oxindole-3-methanol has been developed to achieve a Lewis
acid catalyzed, highly regioselective ring opening of spiro-epoxyoxindoles with indoles. The method is used for the gram-scale
formal total synthesis of (±)-gliocladin C.

3,3′-Bisindole, in particular, 3a-(3-indoyl)-hexahydropyrrolo-
[2,3-b]indole, is a unique structural skeleton present in and
precursor to many indole alkaloids (Figure 1).1,2 The rigid

tetracyclic subunit and a quaternary stereogenic center at the
bridge-head are the key structural signatures of the alkaloids,
which are endowed with remarkable biological and pharmaco-
logical activities. The interesting molecular architecture and
biological properties of the compounds have drawn much
attention from synthetic chemists worldwide.3−6

Therefore, much effort has been devoted toward the
development of efficient methods for the synthesis of 3,3′-
bisindole containing a C3-all carbon quaternary center such as
the (i) Mukaiyama-aldol reaction of 3-(3-indolyl)-2-siloxyin-
dole with aldehyde;4a (ii) acyl migration of indolyl carbonates;7

(iii) Pd-catalyzed allylic alkylation of 3-aryl-3′-oxindoles with
allenes;8 (iv) organo-catalytic conjugate addition of indoles to

isatin derived nitroalkenes and α,β-unsaturated aldehydes;9 (v)
α-alkylation of carbonyl compounds with 3-hydroxy-3-indol-3′-
yloxindoles;10 and (vi) Rh-catalyzed multicomponent reaction
of 3-diazooxindoles, indoles, and aldehydes.11

Another efficient strategy could be the regioselective ring
opening of easily accessible spiro-epoxy oxindoles12 1 with
indoles 2 (Scheme 1). There are several reports on Friedel−

Crafts type reactions of epoxides, in particular, with indoles.13

However, ring-opening reactions of spiro-epoxyoxindoles14

have not been explored, in particular, with carbonnucleophiles
to construct the oxindoles with a C3-quaternary stereocenter.
More importantly, the strategy would provide an easy access to
the Overman intermediate, 3-(3-indolyl)-oxindole-3-carbalde-
hyde 4.4b,c Our continuing interest15 in exploring the reactivity
of three-membered reactive intermediates led us to investigate
the Friedel−Crafts type reaction of spiro-epoyoxindoles with
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Figure 1. Representative natural 3a-(3-indoyl)-hexahydropyrrolo[2,3-
b]indole alkaloids.

Scheme 1. Proposed Designed Reaction of Spiro-
epoxyoxindoles and Indoles
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indoles. Herein we report an efficient and straightforward
synthesis of 3-(3-indolyl)-oxindole-3-methanol 3 via metal
triflate catalyzed regioselective ring opening of spiro-epoxy
oxindoles 1 with indoles 2 and a concise gram-scale formal total
synthesis of (±)-gliocladin C.
To probe the validity of our envisioned design for the

regioselective ring opening of spiro-epoxyoxindoles with
indoles, we studied a model reaction between N-methyl-
spiro-epoxyoxindole 1a with indole 2a. To optimize the
reaction conditions, the Friedel-Craft type reactions of 1a and
2a were carried out by varying the metal triflates, temperature,
and solvents (Table 1). In the event, Sc(OTf)3 catalyzed

reaction in dichloroethane (DCE) at 0 °C gave exclusively the
desired product 3aa with an excellent isolated yield (95%; entry
11). Reactions conducted under other conditions showed either
no reaction or slow reaction with low to moderate yields along
with a mixture of uncharacterized compounds. In(OTf)3 also
showed a comparable yield in DCE at 0 °C (entry 12).
This method could produce a large number of 3-

hydoxymethyl-3-(3-indolyl)-oxindoles 3, if different combina-
tions of spiro-epoxyoxindoles and indoles are reacted. Thus, to
test the generality of this method, a series of spiro-
epoxyoxindoles and indoles were investigated under the
optimized reaction conditions (Figure 2). Electron-donating
and -withdrawing substituents at C5 and C7 of the
epoxyoxindoles were evaluated. Unsubstituted N-methyl
epoxyoxindoles 1a underwent smooth reactions with three
different indoles 2a−c and gave very good to excellent yields of
bisindoles 3aa−3ac. An indole with electron-donating sub-
stituent 2b underwent faster reaction. In comparison,
substituted N-methyl epoxyoxindoles 1b−1f took more time

Table 1. Optimization of Reaction Conditionsa

entry Lewis acid solvent temp (°C) time (h) yieldb (%)

1 Cu(OTf)2 CH2Cl2 25 36 28
2 In(OTf)3 CH2Cl2 25 30 30
3 Sc(OTf)3 CH2Cl2 25 6.5 41
4 Cu(OTf)2 CH2Cl2 0 62 41
5 In(OTf)3 CH2Cl2 0 20 45
6 Mg(OTf)2 CH2Cl2 0 72 NR
7 Y(OTf)3 CH2Cl2 0 85 37
8 Sm(OTf)3 CH2Cl2 0 70 45
9 Sc(OTf)3 CH2Cl2 0 8 48
10 Sc(OTf)3 DCE 25 3 70
11 Sc(OTf)3 DCE 0 4 95
12 In(OTf)3 DCE 0 8 85
13 Sc(OTf)3 THF 0 22 52
14 Sc(OTf)3 CHCl3 0 21 72
15 Sc(OTf)3

c DCE 0 12 85
aN-Methyl spiro-epoxyoxindole 1a (0.28 mmol), indole 2a (0.85
mmol), and Lewis acid (10 mol %) in solvent (2 mL) were stirred at
specified temperature. bIsolated yield. c5 mol % of Sc(OTf)3; NR: No
reaction. 3aa: the first letter “a” originates from structure 1a, and the
second letter “a” originates from structure 2a.

Figure 2. Substrate scope; the first set of letters of 3aa−3ic originates
from structures 1a−i, and the second set from structures 2a−c.
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for complete conversion irrespective of the nature of
substituents and their position giving good yields of
compounds 3ba−3fc. An epoxyoxindole such as 1f also reacted
well with 2-methylindole and gave a good yield of bis-indole
3fd, but the reaction was slow. Changing the N-protecting
group was also studied. N-Benzyl epoxy oxindoles 1g and 1h
were found to take more time in comparison with the
corresponding N-methyl epoxyoxindoles 1a and 1e. The
reaction was also evaluated with the spiro-epoxy oxindoles
without N-protection. Protection-free epoxyoxindoles 1i under-
went smooth reaction and afforded a very good yield of
bisindoles 3ia−ic. Overall the unprotected substrates showed
faster reactivity than the N-protected substrates.
Reaction of epoxyoxindole 1 with 3-substituted indole might

provide the bisindole with vicinal all-carbon quaternary centers.
Accordingly, compound 1i was reacted with 3-methylindole 5a
under the same reaction conditions (Scheme 2). Interestingly,

it gave tetrahydrospirofuro-bisindole 7 having vicinal all-carbon
quaternary centers as a diastereomeric mixture along with 2,3-
bisindole 8. It seems epoxide opening with 3-methylindole
followed by intramolecular cyclization of the intermediate
imine 6 afforded the tricyclic tetrahydrofuroindole core.
Mechanistically, the reaction of spiro-epoxyoxindole 1 and

indole 2 can proceed through 2H-indol-2-one 9 formed upon
treatment of epoxyoxindole with a Lewis acid (Scheme 3).16

The indole 2 can easily add to the intermediate 9 to afford the
bisindoles 3 with excellent regioselectivity.
The reaction of trisubstituted spiro-epoxyoxindole12j 10

having two possible reactive sites was also investigated (Scheme
4). Interestingly it gave compound 11, raised from the less
substituted benzylic center attack as a major product compare
to product 12 through an indole-2-one intermediate. The
reaction was found to be very slow with incomplete conversion.

The synthetic potential and utility of this method was further
demonstrated by a gram-scale formal total synthesis of
(±)-gliocladin C (Scheme 5). For this purpose a gram-scale

ring opening reaction of spiro-epoxy oxindole 1i with indole 2a
under optimized conditions was performed and gave bis-indole
methanol 3ia in 75% yield, higher than the small scale reaction.
N- and O-Protection of the bisindole 3ia afforded the
compound 13. The oxindole carbonyl of 13 was reduced
with NaBH4 at 0 °C followed by treatment with a methanolic
solution of trimethyl orthoformate, and a catalytic amount of
PPTS provided indoline N,O-acetal 14. Desilyation and IBX
oxidation of the (3-(1H-indol-3-yl)-2-methoxyindolin-3-yl)-
methanol 14 gave a very good yield of the Overman
intermediate 4, a versatile precursor for the synthesis of
bisindole alkaloids.4 In an additional two steps, the Overman
intermediate 4 could be transformed to (±)-gliocladin C.4a

In summary, we have developed a highly efficient, versatile
protocol for the synthesis of 3-(3-indolyl)-oxindole-3-meth-
anols via the Sc(OTf)3 catalyzed, highly regioselective ring

Scheme 2. Reaction of Spiro-epoxyoxindole 1i and 3-
Methylindole 5a

Scheme 3. Proposed Mechanism for the Lewis Acid
Mediated Reaction of Spiro-epoxyoxindoles and Indoles

Scheme 4. Reaction of Trisubstituted Spiro-epoxyoxindole
10 and Indole 2a

Scheme 5. Formal Total Synthesis of (±)-Gliocladin C
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opening of a variety of spiro-epoxy oxindoles with indoles. The
method is also suitable for the protection-free spiro-
epoxyoxindoles, and it undergoes faster reaction in high yield.
The ring opening reaction is easily scaled up to gram scale. One
of the 3-(3-indolyl)-oxindole-3-methanols is efficiently trans-
formed to the Overman intermediate, allowing the gram-scale
formal total synthesis of (±)-gliocladin C. Further studies on
the utility of the spiro-epoxyoxindoles and their applications are
currently being investigated in our laboratory.
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